
Computer vision for Eurobot 2013

Ond°ej Stan¥k

2013-06-06

Abstract

Computer vision plays important role in mobile robotics. Robot equipped

with a camera can retrieve various information about its surroundings. It

can recognize objects and perform operations that would be di�cult or

even impossible without the ability of �robotic sight�. Web camera is

a cheap computer gadget, yet very advanced and universal sensor for a

mobile robot.

However, digital camera produces loads of image data and its process-

ing is demanding both on the computational performance of hardware and

complexity of the software algorithms. Fortunately, an open-source com-

puter vision library; OpenCV is available. The library makes a very nice

framework for computer vision applications and includes the key image-

processing algorithms, all of them ready to work out of the box.

In the past, it was a hassle to make the OpenCV library work on

arbitrary hardware platform. Compiling the library from scratch was quite

deterring for many potential users. Happily, an OpenCV port for Android

devices was introduced. Installing the OpenCV library is then a matter

of two taps in the Android Market. Every smart phone is equipped with

a camera and it has reasonable processing power to run image processing

algorithms. In light of these facts, a smart phone is ideal candidate for a

�brain� of a small mobile robot.

This paper describes the use of Android smart phone for robotic ma-

chine vision and mobile robot control. A simple mobile robot with 8-bit

microcontroller was transformed to advanced camera-enabled robot, just

by mounting a smart phone to it. This camera upgrade greatly extended

the range of tasks the robot can perform in the Eurobot 2013 competition.

Apart from solving a concrete computer vision problem, we also de-

scribe theoretical background of detecting circles in image, using Hough

transform in particular.

1

Part I

Analysis

Eurobot is a popular robotic contest that calls for use of computer vision tech-
niques to handle complex tasks, such as object detection and manipulation. In
this part, one of the Eurobot 2013 contest activities is described and analyzed
from the computer vision standpoint.

1 The Eurobot contest

Robotic competitions introduce every year new challenges for teams of students
and individuals. One of these competitions is Eurobot, an international amateur
robotics contest, organized since 1998. It is aimed mainly to graduate students
in technical �elds. Every year, new rules are published and new game elements
are presented. This year (2013), robots are supposed to celebrate their birthday.
Robots must unwrap gifts in order to reveal their content, they should serve
drinks to guests, put cherries on the cake and last but not least, blow out as
many candles on the cake as possible. In this paper, we focus only on the task
of blowing out the candles.

1.1 Blowing out the �candles�

Goal of the project is to implement an algorithm for identi�cation and classi�-
cation of speci�c game objects of the Eurobot 2013 competition. The objects
of interests are called �candles�. A �candle� is a game element that consists of a
green tennis ball and supporting cylinder that holds the tennis ball. The color
of the supporting cylinder is either white, red or blue. There are many �candles�
distributed evenly on a half-circular cake, the position of the candles is speci�ed
in rules and does not vary. However, the colors of the supporting cylinders has
to be identi�ed by the robot. The robot will go around the candles, identify
them and classify them according to the color of the base cylinder. Based on
the recognized color of the candle, robot may perform an action of blowing out
the candle. It will use its manipulator to push the tennis ball inside the hol-
low cylinder, until the ball dispersals completely. To achieve this, robot has to
recognize the position of the candle precisely, so that it can perform the action.

2 Camera Feedback for Robot Positioning

The robot has to move to a position so that the candle of interest is exactly in
front of the robot and in a speci�ed distance. Only then, the robot can trigger
its manipulator to push the ball inside the cylinder.

A feedback loop mechanism will be used for positioning the robot. The robot
will acquire and process image from camera, and it will calculate the position

2

Figure 1: Eurobot 2013 - the cake with candles

and size of the candle in the image. Then, it will drive its motors so that it gets
the candle to the center of the image and it will move towards the candle until
it is close enough to perform the action.

3 Candle Recognition

The main feature of each candle is the yellow-green tennis ball which represents
candle �ame. Whereas the color of the base cylinder varies, the color of the
tennis ball is always the same, so it makes sense to focus on the tennis ball
recognition in the �rst place. However, because the tennis ball is partially
hidden in the cylinder, it does not form a complete circle in the captured image.
The tennis ball detection has to be designed so that it overcomes this limitation.

4 Hough Transform for Circle Detection

Hough transform is a general method of �nding basic geometrical shapes in
digital images. In this paper we focus on particular application, how the general
concept of Hough transform is used to identify imperfect circles in the image
acquired from camera.

Circle of radius r and center (a, b) in Cartesian coordinates is a set of points
{(x, y)} that satisfy the analytical equation

(x− a)2 + (y − b)2 = r2 (1)

When we are given radius r and circle center (a, b), we can use the equation to
construct a raster image of that circle. That's a basic task of computer graphics.
However, in image analysis, we face an inverse problem. Given a binary raster

3

image (set of points I = {(x, y)}), we want to �nd circle parameters a, b and r
so that the equation (1) holds for almost1 all points (x, y) in set2 I.

Strictly mathematically speaking, Hough Circle Transform H is a mapping
from the image space (x, y) to the parameter space (r, a, b); H : R2 → R3. How
does the mapping work? The best way is to think of it as an inverse operation to
�Circle drawing�. �Circle drawing� C is a mapping from parameter space (r, a, b)
to image space (x, y); C : R3 → R2.

The mapping C maps any arbitrary set of parameters P ⊆ R3 to an image
I ⊆ R2:

C(P) = {(x, y)|(x− a)2 + (y − b)2 = r2 ∧ (r, a, b) ∈ P}

Then, we simply de�ne Hough Circle Transform H as inverse of the �Circle
drawing� transform C:

H(I) = P ⇐⇒ C(P) = I

Please note that transformation H, due to its de�nition, only transforms
geometrically perfect images of circles. If image I is not a perfect circle image,
then H(I) is not de�ned for such I. Also keep in mind the images considered
are not actually �nite bitmaps as we know them from computer graphic, but
rather an in�nite sets in vector space R2.

To address the circle detection in �nite bitmaps, we need to de�ne the Hough
transform in a di�erent way. To be precise, we will �rst de�ne the terms we are
working with:

• binary bitmap image I is any (�nite) set I ⊂ N2. We say that image I has
spacial dimension M × N if M,N ∈ N are the lowest integers for which
this formula holds:

(x, y) ∈ I ⇒ x < M ∧ y < N

• Observation: The space I of all binary bitmap images is the power set of
N2:

I = P(N2) = 2N
2

• The circle p in parametric form is a triplet p = (r, a, b), r ∈ N, a, b ∈ Z.
Note that we consider only discrete values of parameters.

• The circle parameter space P accommodates the triplets (r, a, b).

P = N× Z2

• The parameter accumulator A is a function that for every parameter
triplet (r, a, b) ∈ P assigns the frequency of occurrence c ∈N.

A : P→ N
1not all points, due to expected imperfection in the source image
2assuming the set is su�ciently big to represent the circle

4

• The set of all parameter accumulators A is the parameter accumulator
space A.

• Hough transformH for binary bitmap images is a mapping from the binary
bitmap image space I to a parameter accumulator space A

H : I→ A

For every bitmap image I, the Hough transform �nds an accumulator H(I) = A
which is de�ned as follows:

A((r, a, b)) = |{Ux,y|(r, a, b) ∈ Ux,y, (x, y) ∈ I}|

The set of parameters Ux,y ⊆ P is constructed for for every point (x, y) in
the bitmap I:

Ux,y =
{
(Round(r),Round(a),Round(b)) |(x− a)2 + (y − b)2 = r2, r > 0, a, b, r ∈ R

}
The Hough transform H : I → A for binary bitmap images actually does

not give the circle parameters directly, as the general Hough transform H :
R2 → R3 would. Instead, it gives us the parameter accumulator A ∈ A. This
allows to de�ne the Hough transform H for any input bitmap. The circles
(from parameter space P) have to be determined by investigating the returned
parameter accumulator A.

So, to get the parametric expression for all circles represented in bitmap I, we
need to investigate the accumulator function A = H(I). For every possible circle
(r, a, b) the accumulator function gives the occurrence number c = A((r, a, b)).
The number c is the number of pixels in bitmap I that represent the considered
circle (r, a, b). The higher is the number c = A((r, a, b)), the higher is the
likelihood that the circle (r, a, b) is in represented in the image bitmap I.

To get the circle pmax = {(r, a, b)} with the most likelihood, we just need to
�nd the maximum of the parameter accumulator A:

pmax = arg max
(r,a,b)∈P

A((r, a, b))

If we need to �nd more circles in the image, we are searching for local maxima
of the accumulator function A.

It is obvious that searching for a circle parameters is a matter of interpre-
tation of the accumulator A. We might claim further conditions on the local
maxima to suppress detection of false circles. Especially, it is necessary to de-
�ne a lower limit for the accumulator maxima, to ensure that no false circles
are detected in image that actually does not contain any circles.

This was the complete description of the original Hough transform for circle
detection in bitmaps. The original method, however is not e�cient, as calculat-
ing the complete three-dimensional parameter space takes a lot of of processing
time. Therefore, in OpenCV library, a more e�ective method is implemented.
We will describe the e�ective method for �nding circles in the next part.

5

Part II

Implementation

5 OpenCV library (for Android)

OpenCV library has to be installed as a stand-alone Android application. It is
available in the Android Market, so the installation to any Android device is
just a matter of two taps. No settings or adjustments to the library is neces-
sary, the library works out the of box. Once installed, it provides an OpenCV
environment for other Java Android applications.

6 Hough Circle Transform in OpenCV

OpenCV library implements Hough transform for circles. As pointed out in
the Analysis part, classical Hough Circle Transform calculates a 3-dimensional
parameter accumulator space. To recall, the three dimensions are the center
coordinates x, y and circle radius r. Calculating the accumulator volume would
need a lot of memory and time - the original method is ine�ective.

In OpenCV, the Hough gradient method is implemented for �nding the cir-
cles. This method uses only 2-dimensional accumulator and thus it is more
e�ecient. The Hough gradient method takes a bitmap image as an argument.
First, it performs an edge detection3 on the source image. That yields the out-
lines of all shapes in the image. Then it calculates the Sobel derivatives4. These
derivatives are used for an approximation of the gradient at every nonzero point
in the bitmap. Assuming that every nonzero pint is a part of some circle, the
calculated gradient at that point is orthogonal to the tangent of the possible
circle. The gradient points in the direction towards5 to the circle center.

For every pixel, we draw that line into the 2-dimensional x, y accumulator
plane. These lines will intersect, and the accumulator value will be higher at
points where lines intersects the most. The local maxima of the accumulator
plane are the possible circle centers.

However, this method has some shortcomings. First, it has a problem with
detection of concentric circles. Second, the radius of the circle has to be de-
termined additionally, we just described how to get the circle centers. The
implementation of Hough gradient method in OpenCV calculates the radius as
well, but the documentation warns that the value might not be very accurate
and if better accuracy is requested, the programmer should implement another
method for detecting the circle radius.

There is one improvement to this method that allows to specify the maximum
and minimum radius of circles we want to detect. The trick is to draw just

3using the cvCanny() function
4using cvSobel()
5or outwards, we cannot tell, but for sure the slope is approximately the same

6

line segments to the accumulator, not the whole lines. The bounds of the
line segments are determined by the minimum and maximum radius to detect.
OpenCV implements this feature. This is highly bene�cial, not only it simpli�es
�ltering the output, but it also reduces computation time.

7 Tennis ball recognition

Figure 2: Original image (recognized circle marked)

7.1 Masking out the tennis ball pixels

The tennis ball has a very speci�c yellow-green color, that is unique in the
picture. To mask out all the pixels that belong to the tennis ball, we convert
the input image to HSV6 color space and then we select just the pixels that
are in the speci�ed HSV range. That gives us a binary bitmap mask, shown in
�gure 3.

As shown on the sample image, not all pixels of the tennis ball were masked.
That's because the tennis ball has white lines and black lettering. For the later
Hough transform, we need to get rid of such artifacts in the masked image.

7.2 Morphological operations

We use two morphological operations to suppress the artifacts in the masked
image [1]. Image opening and closing operations are the way to go. The closing

6Hue, Saturation, Value

7

Figure 3: Masked image

morphological operation removes the small black parts inside the ball by growing
the foreground. Of course, this has the side e�ect of growing the ball outline.
Therefore, after closing the image, we apply opening operation, that contracts
the foreground and scales it back to original shape.

7.3 Hough transform

Then, we apply a Gaussian blur to reduce noise and avoid false circle detection,
as suggested in the OpenCV documentation [2].

Finally, we pass the blurred gray-scale image to the HoughCircles() OpenCV
function. Some additional parameters have to be speci�ed and �ne tuned, for
instance:

• the minimum distance of the circle centers

• the interval for circle radii

• accumulator resolution

Tuning these parameters was done experimentally, observing the results in real
environment. The HoughCircles() function returns an array of circles that were
found in the image (pixel coordinates of the center (a, b) and radius r).

8 Camera feedback for robot positioning

Our goal is to position the robot so that the ball is directly in front of robot's
manipulator. Once we know the precise position of a ball in the captured image,

8

Figure 4: Mask after morphological operations and Gaussain blur

we can drive the motors of the robot so that the tennis ball moves in the image
towards the center. That means the circle in the image has to be center aligned
and of a speci�ed radius. First, the robot moves so that it gets the ball in the
center of the camera image. Then, if the radius of the ball is too small, robot
moves towards the ball until the radius is within a speci�ed range. Only then
it can perform an action with its manipulator.

This feedback algorithm was tested on real robot. The testing conditions
were simpli�ed - there was just one ball present on a test table and the light con-
ditions were stable. In this settings, the robot performed quite well. However,
when testing on a real Eurobot playground, this algorithm was not very robust.
Due to varying light conditions and multiple balls, not all balls were detected
correctly. The robot had a problem to �x to one ball, and when detection of the
desired ball failed in one sample, it decided to move towards another ball on the
image. That resulted in hesitant behavior of the robot. Moreover, the motors
of the robot are undersized to the overall robot's weight, and together with the
poor quality of wheel encoders, the movement of robot is very non-uniform.
That was a big source of trouble for the feedback mechanism.

9 Simpli�cation of the problem

With respect to all the problems mentioned in previous section, we decided to
decrease degrees of freedom of the feedback system. The mechanical construc-
tion of the robot was improved, we added a frontal spacer element with wheels.
This �xed the distance of the robot from the �cake� with candles (tennis balls)

9

Figure 5: Hanuman robot - frontal spacing element with wheels

and eliminated two degrees of freedom. This design decision simpli�ed the im-
age processing and the feedback mechanism a lot. The robot is moving around
the �cake� in a �xed distance and it's camera always looks towards the center of
the cake. This has the nice bene�t that in the processed image, balls does not
overlap, the circle has �xed radius and the background is always the same.

The robot moves around the cake until it detects a tennis ball in the center
of the screen. When this situation occurs, it stops and activate its manipulator
to blow out the �candle�. After �nishing the action, it continues moving around
the cake.

10 Robotic platform

10.1 Mechanics

The Hanuman robot has an omni-directional wheelframe. The three wheels
allow movement in any arbitrary direction, or rotation in place. That makes
the platform very �exible for solving di�erent tasks. In front of the robot, there
is a manipulator that pushes the tennis balls inside their supporting cylinders.
Robot is equipped with a holder for a smart phone. The smart phone camera
looks straight forward underneath the ball manipulator.

10

10.2 Electronics

The robot is controlled with a simple embedded system. On board, there is
an ATmega128 8-bit microcontroller and supporting electronic circuity for con-
trolling the motors. The robot is equipped with a standard Bluetooth serial
RFCOMM adapter. This adapter plays the key role in communication with the
smart phone, which runs the image processing application.

10.3 Firmware

The ATmega128 microcontroller is programmed in C language. The �rmware
implements drivers for motors, encoders, ball manipulator and other sensor. It
also provides a useful service menu that can be accessed from any computer or
smart phone via Bluetooth. Finally, it supports binary protocol for communi-
cation with the Android phone.

Conclusion

A computer vision algorithm for Eurobot 2013 competition was developed and
successfully tested. Android platform was proved to be well suited for image
processing and robot control. Although the main focus of this project is the
computer vision algorithm, a complete robotic system was developed, including
mechanics, hardware and �rmware. Testing the CV algorithm on the real robot
proves the applicability of the developed software. During development, we
faced problems with varying ambient light. Eventually, these problems were
solved by enabling the integrated camera lightening. All parts of the complex
robotic system work and cooperate together to accomplish the given task.

References

[1] http://wiki.elphel.com/index.php?title=OpenCV_Tennis_balls_recognizing_tutorial

[2] http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html

[3] http://opencv.org/platforms/android.html

[4] Gary Bradski, Adrian Kaehler: Learning OpenCV, O'Reilly, September
2008: First Edition, ISBN: 978-0-596-51613-0

11

