
Embedded Software Development for a Mobile

Robot

Ond°ej Stan¥k

www.ostan.cz

SRH Hochschule Heidelberg, Master IT, Project work

July 24, 2013

Abstract

Robotic competitions are exciting events that motivate students to gather to-

gether and develop a robot collectively. This is a great opportunity for students

to learn how to work in a team and also it lays out requirements for systematic

and documented work that other teamworkers could build on.

During my study stay on SRH Hochschule Heidelberg, I was the leader of

a team of students building robot for the Eurobot 2013 competition. This

paper describes the software part of the project as well as the tools we used for

development and collaboration. Together we worked on an embedded software

system of the Hanuman robot. The task was to develop all the software from

scratch, including the low-level drivers for sensors and actuators.

In the Design part, I suggest several programming guidelines that would help

the team members to develop easily understandable and maintainable code. It

was important to establish a solid framework, choose right development tools

and lay out guidelines that other programmers could stick to.

The implementation part then describes several interesting aspects of our

embedded system, such as Bluetooth communication and a universal terminal

interface for robot diagnostic and teleoperation.

Part I

Analysis

1

Chapter 1

Introduction

Robots are created to help people in many diverse activities and procedures.

In some industries, the automation reached a level where basically all manual

workers can be replaced with robots, which are faster, more reliable and e�ective.

Robotisation in the industry has happened quietly and almost without the notice

of general public, but recently, robots in�ltrate into our daily lives: Automated

robotic vacuum cleaners became a common article in electro stores, as well as

robotic toys. The state-of-the-art automobiles are equipped with auto-parking

feature, which �nds a parking spot and parks the vehicle automatically. It is

sure that people will face automation more and more frequently in near future.

1.1 Mobile Robots

Mobile robots are automatic machines that can move in their environment. They

are usually equipped with an embedded system that evaluates data from robot's

sensors and performs speci�c tasks. Every mobile robot has some means for

sensing and a�ecting its surroundings. These are called sensors and actuators.

1.2 Sensors

Sensors provide the robot with information about its environment.

Thanks to data from sensors, the robot can perceive the world around it. Basi-

cally, sensors are for a robot the same what senses are for a human.

There are many types of sensors, from the simplest ones like contact switches

2

for detecting collisions to more advanced sonars and laser scanners. The robot

can be equipped with a camera, microphone, GPS, compass, accelerometer,

gyroscope and dozens of others. In short, any measuring device can be a sensor

for a robot.

1.3 Actuators

The robot has some means for a�ecting its surroundings as well. These are called

actuators. The essential actuators of every mobile robot are the mechanisms

of its locomotion. For instance, the motors that propel robot's wheels, legs,

propeller or whatever.

Further, the robot can be equipped with some kind of robotic arm for ma-

nipulating objects, or it can carry a vacuum cleaner or a gun. The possibilities

are really wide, everything what a�ects robot's environment in some way is an

actuator.

1.4 The Eurobot Contest

Robotic competitions introduce every year new challenges for teams of students

and individuals. One of these competitions is Eurobot, an international amateur

robotics contest, organized since 1998. It is aimed mainly to graduate students

in technical �elds. Every year, new rules are published and new game elements

are presented. This year (2013), robots are supposed to celebrate their birthday.

Robots must unwrap gifts in order to reveal their content, they should serve

drinks to guests, put cherries on the cake and last but not least, blow out as

many candles on the cake as possible.

Our goal is to develop a robot for the Eurobot 2013 competition. To succeed

in a complex software team project, it is necessary to establish some baseline

and working style that the team members could stick to. This will be described

in the following part.

3

Part II

Design

4

Chapter 2

Development Tools

Since the Hanuman robot is a team project, it was very important to establish

a solid development environment and uni�ed coding style that will allow to

keep the project well organized and maintainable. It was assumed that several

programmers will work on the same code. Therefore, I set up collaboration

tools (code repository server) as well as documentation Wiki system hosted on

GoogleCode [3].

2.1 Source Control Management Tool

Source control management tools help signi�cantly to organize source code that

is maintained by many programmers simultaneously. First, it helps to synchro-

nize and merge work of programmers that are editing the same code. Further-

more, it visually shows all the changes done by others, so the developer can

easily take track of what has been changed in the code and why. When a pro-

grammer makes a change in the code, he is then requested to commit the change

for others to see. When doing the so called �commit�, the programmer describes

new features he implemented or bug�xes he made in the code. That way, the

development is always well documented.

But there is many more advantages behind a revision control system. The

revision control system keeps track of all changes that have been made to the

code, so if some change shows to be fatal and destructive, the revision control

system allows to fall back to a working revision. So it also stands for very good

backup tool for the source code. That is the reason why revision control systems

5

Figure 2.1: TortoiseHg GUI - Hanuman revision graph

are often used even by a single programmers, when no collaboration is expected.

For the project I chose the Mercurial repository system [5]. Mercurial is an

free distributed source control management tool, that is easy to learn, yet very

powerful. Mercurial has nice graphical interfaces for Windows and Linux sys-

tems, that greatly simplify the revision control, as well as code di�s and merges.

The suggested Mercurial GUI is TortoiseHg [6]. The convenient graphic inter-

face of TortoiseHg and Meld di� tool is shown on Figure 2.1 and 2.2 respectively.

2.2 Teamwork

Every programmer got a speci�c task to solve, as for example to develop a driver

for a speci�c peripheral or sensor. To keep the programming work well struc-

tured, I suggested particular interfaces of the drivers (function prototypes) to

be implemented. Since the speci�cation of interfaces was clear from the very be-

ginning, it allowed other team members to comprehend the function prototypes

in their code and thus this eliminated the unnecessary delays in development,

since one programmer didn't have to wait until his colleague implements a func-

6

Figure 2.2: Meld - Graphical source code di�

tion he is going to use in his code. He could just use a prototype meanwhile,

until his colleague commits the tested driver into the source code repository.

2.3 Toolchain and IDE for Embedded Software

Development

The selection of a toolchain was straightforward, for AVR microcontrollers there

is a good multi-platform toolchain AVR-GCC [7]. On Windows system, it is

supplied together with AVR Studio [8] or WinAVR [9]. The toolchain is used

to compile and link a C code to an binary .hex �le, which is then uploaded to

the target (AVR MCU in Hanuman robot). For the uploading of new �rmware

there is a command-line tool avrdude [10]. As a hardware programming tool

we used the STK500v2 clone. The uploading procedure is done by invoking a

command:

$ avrdude -p m128 -c stk500v2 -P /dev/ttyACM0 -U flash:w:Hanuman.hex:a

However, the uploading of new �rmware can be done directly from IDE,

using a button. I suggested Eclipse as an IDE for the development. Eclipse is an

7

Figure 2.3: Eclipse IDE

open-source multiplatform tool, easy to learn, but with high potential in terms of

code refactorization, analysis and debugging. The Eclipse can be con�gured to

support AVR microcontrollers by installing the AVR-Eclipse plugin [11]. With

my guidelines we setup the development tools for every programmer in the team.

8

Chapter 3

Programming Guidelines

In a team, it is important to agree on a common programming style, so that

the code is maintainable by all team members. In this chapter I present several

design templates and paradigms that will set a framework for every programmer

in the team.

3.1 Embedded Control System of a Robot

Program in a robot controls robot's sensors and actuators and it performs the

high-level tasks required for the Eurobot competition. The program runs in an

8-bit microcontroller on board of the robot, and therefore it is referred to as

an Embedded System. The processing power of the microcontroller is limited,

which has to be always considered when developing a software for such plat-

forms. Programming 8-bit microcontrollers is very speci�c, because there is no

operation system that guarantees fundamental features like threading, device

drivers or �le system. The programmer has to ensure required functionality on

his own. Therefore, I point out guidelines for designing peripheral drivers and

modules in a microcontroller, as well as some programming practices speci�c

for microcontroller programming.

Since the Eurobot project is a teamwork, it is very important to set some

rules and framework so that all team members can stick to that and have a

solid base for development. Here, I present one of possible paradigms that

results in a readable and maintainable code, uni�es the debugging and clearly

states the interfaces of the drivers and modules that will be developed by the

9

team members.

3.2 Microcontroller

Microcontroller (abbreviated MCU) is a single-chip device, that can run a com-

puter program with a minimum of external components. It is a small computer

�tted into an integrated circuit. Besides the processor core, the microcontroller

usually contains volatile operation memory (typically SRAM1), non-volatile pro-

gram memory (typically FLASH2) and peripherals for interfacing other devices.

Microcontrollers are intended for use in embedded systems, such as consumer

electronics, remote controls, automobile industry, toys and others.. For these

applications, objectives like low power consumption, durability or cheap price

are preferred over computational performance. With respect to low processing

power, the programmer should design the software carefully.

3.3 Modules and Peripheral Drivers

The microcontroller is equipped with peripherals which allow interfacing sen-

sors and actuators. To list a few of them, such peripherals include: General

Purpose Input/Output (GPIO), Analog-to-Digital Converter (ADC), Universal

Synchronous/Asynchronous Receiver/Transmitter (USART), I2C3 serial bus,

Timers with Output Compare feature for Pulse-Width Modulation (PWM) and

many others..

All these peripherals need to be con�gured prior usage. For every sensor

and actuator there must be a driver that con�gures appropriate peripherals

and provides the interface for the particular sensor/actuator. The driver should

carry out:

• Initialization of peripherals for interfacing sensor/actuator

• Con�guration of the sensor/actuator (optional)

• Data retrieval from the sensor / Driving the actuator

Drivers provide basic interface to sensors and actuators. Modules make use of

these interfaces to provide additional features and perform more complicated

1Static Random Access Memory
2non-volatile memory that can be erased and reprogrammed in units of memory called

blocks
3Inter-Integrated Circuit

10

tasks. In our project, a good example of a driver is a code for motor control.

The motor driver con�gures the timer peripheral for PWM generation:

void Motors_init(void);

and provides function for setting the power applied to motors:

void SetMotorPower(uint8_t motor, int16_t speed);

Please refer to /drivers/motor.c for source code documentation.

An example of a module is the line following code, located in /lineFollowing.c.

This code gets information about the line position from the lineSensor driver

and then sets the appropriate speed for robot's wheels using the motor driver.

It is a good practice that every driver/module is in separate source �le and

provides uni�ed interface for initialization - customDriver _init(). Optionally,

if the driver/module requires executing operational routines on time regular ba-

sis, the customModule _task() is designated for this purpose. Of course, the

driver or module will introduce other speci�c functions for driving actuators and

reading sensor values. It is crucial to implement these functions as non-blocking

whenever possible. The use of blocking functions for sensor data retrieval sig-

ni�cantly decreases the performance of the program.

3.3.1 Example of Non-blocking Peripheral Driver

Good example of the non-blocking implementation is a driver that transmits and

receives data through the UART communication interface (/drivers/uart.c).

The UART peripheral is only capable of sending and receiving the data on

a single-byte basis. When sending a byte, the driver copies the byte to spe-

ci�c register of UART peripheral and initiates byte transfer. The byte transfer

takes quite a long time, and when it is complete, the driver is noti�ed. The

programmer often needs to sent a sequence of bytes (text string or a data

packet). A naive implementation of the UART driver would be a blocking

sendString(String) function that sends individual bytes one after another

and waits until the last byte was sent. But this is way too much ine�ective, as

UART transmission is orders of magnitudes slower than CPU! The non-blocking

implementation of sendString(String) would rather copy the data to a circu-

lar bu�er, from where the data is sent later, in an asynchronous manner, using

the interrupt techniques. For receiving bytes, similar interrupt approach must

be used, as no other way is reasonable in that case.

11

3.3.2 Debugging and Error Messages

It is a good practice to output textual debugging and error messages from

modules, which will make the development and debugging easier. A uni�ed

debugging interface with adjustable verbosity levels will be used. This method

was introduced in Dean's Camera LUFA project [2].

The printf function provides convenient way for printing strings and num-

bers in human readable form. First, it is necessary to setup the C printf

function to work properly on a microcontroller. Obviously, there is no screen,

so the output will be passed to a serial interface and displayed in PC. Any

stream device can be used as output for the printf function. The programmer

only need to set up printf's TxByte hook accordingly.

Then, in a header �le of a module, there will be a macro providing debugging

output with adjustable verbosity levels. See Listing 3.1.

12

#define PROTOCOL_DEBUG(l , s , . . .) do { \

i f (PROTOCOL_DEBUG_LEVEL >= l) \

printf_P (PSTR(" (PROTOCOL) " s "\ r \n") , ##__VA_ARGS__)

; \

} while (0)

#define PROTOCOL_DEBUG_LEVEL 1

Listing 3.1: Debugging macro de�nition

And the usage of macro will be as follows:

PROTOCOL_DEBUG(1 , "ProcessPacket : wrong checksum ,

d i s c a rd i ng packet ") ;

PROTOCOL_DEBUG(2 , "Received checksum : %d , Expected : %d" ,

packet−>checksum , sum) ;

Listing 3.2: Debugging macro - example of usage

This method of textual debugging is �exible and easy to manage. It guar-

antees visually pleasing and uni�ed debugging output for diverse modules, and

can be easily turned o� in the release version of the software.

It is important to mention that printf might be an overkill in some us-

age scenarios. In addition, because printf function is time-consuming and

non-reentrant, the debugging macros cannot be used in interrupt routines. We

use the debugging macros in places that are not time critical, e.g. for inform-

ing about initialization of modules/drivers, or for signaling unrecoverable error

states, where the use of time-consuming function does not matter any longer.

13

Chapter 4

Communication Interface

To see what is happening inside the embedded system (robot), we need to have

a way how to retrieve some information from the system. For this, we use an

UART communication interface on the AVR MCU. The communication with

the robot is crucial especially during development and debugging, when we need

to verify the output of sensors and state of the algorithms.

4.1 Wireless Connection to the Robot

It is very useful to have a wireless link to the robot, which can be used for

remote control as well as for debugging. Bluetooth is a great technology that

can be added to any existing robot very easily and at a low cost, by using the

existing UART interface.

4.1.1 Bluetooth

Bluetooth is a wireless standard for interconnecting mobile devices. It is in-

tended for forming ad-hoc Personal Area Networks (PAN). The e�ective range

is approximately 10 meters for a regular (Class 2) Bluetooth device and 100

meters for Class 1 device.

The Bluetooth technology is designed with ease of use in mind. It provides

mechanisms for convenient device and service discovery. Establishment and

con�guration of a Bluetooth connection is easy for the application user.

The data rate can be as high as 3 Mbit/s for the Bluetooth 2.0 + EDR1 ver-

1Enhanced Data-Rate

14

sion. The Bluetooth technology supports various data transport modes, suitable

for transferring both synchronous and asynchronous data. Finally, the Blue-

tooth technology is supported basically in every cell phone and laptop, which is

a great advantage.

4.1.2 Bluetooth RFCOMM modules

There are two ways how to implement Bluetooth technology in a robot. The

Bluetooth stack can be located either in the Bluetooth module itself, or it is

implemented in the microcontroller of the robot. The �rst option is commonly

used in robotics. Implementing a Bluetooth stack in a microcontroller is a

very challenging task, so many authors rather choose single-purpose Bluetooth

modules that have protocol stack integrated on chip. Such modules are known

as Bluetooth RFCOMM modules and they are meant as a cable replacement

for the Serial Port (RS232). When the RFCOMM module is linked with a

computer, the operation system creates a virtual serial (COM) port. The data

stream sent to the virtual port is transparently carried over Bluetooth channel

to the serial interface of robot's microcontroller. This allows to build up a

wireless connection to the robot with minimal e�ort. However, the capabilities

of integrated Bluetooth stack are very limited; basically only a single point-

to-point RFCOMM connection initiated by the host (computer or phone) is

possible. The con�guration of such module is limited as well.

For our robot, I decided to get a cheap2 RFCOMM module from DealEx-

treme.com [12]. This module can be connected directly to the UART interface

of the microcontroller, and it is very nice replacement for cable. With a minimal

e�ort, a universal Bluetooth interface was added to the robot. This Bluetooth

technology allows the robot to be controlled from a PC as well as from a smart

phone.

4.2 The Terminal Interface of the Robot

Inspired by e�ectiveness of Linux-like terminals, I decided to develop a terminal

interface for the Hanuman robot that would allow to access and con�gure all

the drivers and modules of the robot. The terminal interface is solely textual

(ASCII) oriented, so anyone can access the robot interface without need of

custom control application. Any serial terminal will do the job. The terminal

2RFCOMM module costs about 8 USD

15

Figure 4.1: RFCOMM Bluetooth module from DealExtreme

interface is supported on all operation systems, including Android OS for smart

phones. Therefore, the robot can be controlled from any device without need

to install any particular software on the device. Figure 4.2 shows the terminal

to Hanuman opened from a Linux system.

On Linux based systems, the the terminal to Hanuman robot can be opened

issuing the two commands in a Unix shell.

First, we establish a Bluetooth connection to the RFCOMM module on the

robot. For this, the MAC address of the module has to be speci�ed.

$ sudo rfcomm connect rfcomm5 00:13:03:26:14:01

Afterwards (in another shell) we open the terminal program. Please note

that the communication baudrate is set to 9600 bauds:

$ screen /dev/rfcomm5 9600

After pressing any key the welcome screen of Hanuman terminal will appear,

as shown in Figure 4.2. The user then select a number of the speci�c category

he or she wants to enter.

On Android Phone, the pairing procedure has to be invoked before the �rst

connection to the Hanuman robot. The PIN is 1234. Then, the BlueTerm

application can be used to establish the connection to the Hanuman robot.

This is shown in Figure 4.3.

16

Figure 4.2: Terminal to the Hanuman robot in Linux system

Figure 4.3: Terminal to the Hanuman robot in Android OS

17

Part III

Implementation

18

Chapter 5

Hanuman Robot

Figure 5.1: Hanuman robot - performing tennis ball manipulation

19

5.1 Mechanics

The Hanuman robot has an omni-directional wheelframe. The three wheels

allow movement in any arbitrary direction, or rotation in place. That makes

the platform very �exible for solving di�erent tasks. In front of the robot, there

is a manipulator that pushes the tennis balls inside their supporting cylinders.

Robot is equipped with a holder for a smart phone. The smart phone camera

looks straight forward underneath the ball manipulator.

5.2 Electronics

The robot is controlled with an embedded system. On board, there is an AT-

mega128 8-bit microcontroller and supporting electronic circuity for controlling

the motors. The robot is equipped with a standard Bluetooth serial RFCOMM

adapter. This adapter plays the key role in communication with the smart

phone, which can run more complex control algorithms.

5.3 Firmware

The ATmega128 microcontroller is programmed in C language. The �rmware

implements drivers for motors, encoders, ball manipulator and other sensors. It

also provides a useful service menu that can be accessed from any computer or

smart phone via Bluetooth. Finally, it supports binary protocol for communi-

cation with the Android phone.

20

Chapter 6

Embedded System

Implementation

There is many drivers and modules that have been implemented in the Hanuman

�rmware:

• motor control (/drivers/motors.c)

• reading wheel encoder (/drivers/encoders.c)

• feedback wheel control driver (/drivers/wheelStepControl.c)

• reading line sensor with ADC (/drivers/lineSensors.c)

• reading button state (/drivers/buttons.c)

• signalling LEDs (/drivers/leds.c)

• controlling lift manipulator (/drivers/lift.c)

• serial communication (/drivers/SerialStream.c, drivers/uart.c)

• line following (/lineFollowing.c)

• terminal interface (/terminal.c)

The robot can be controlled from terminal, and the state of sensors can be

displayed and analyzed through the text interface on UART. There is an Android

application that can control the speed of motors by sending control packets to

the UART interface of robot. The board provides an interface for controlling

21

motor speed, wheel stepping and its lift manipulator via UART/RFCOMM,

binary protocol. Please see drivers/uart.c how this is implemented.

6.1 Motor Driver

6.1.1 The Motor Driver Interface

The interface of the driver is speci�ed in Listing 6.1. This interface was devel-

oped before any actual coding work started, so that other programmers could

plan on using the functions that will be implemented. Interface speci�cation is

essential for the team collaboration.

/∗∗
∗ Copyright (C) Ondrej Stanek

∗ ostan89@gmail . com

∗ h t t p ://www. ostan . cz

∗
∗ Driver f o r motors , uses TIMER1 fo r PWM genera t ion .

∗
∗/

/∗∗
∗ con f i gu r e s TIMER1 fo r PWM genera t ion

∗/
void Motors_init (void) ;

/∗∗
∗ Se t s the PWM duty and d i r e c t i o n o f motor

∗ @param motor

∗ Se t s duty f o r motor id 0 , 1 or 2

∗ @param speed

∗ The speed ranges from −255 to 255

∗ speed = 0 means t ha t the motor s t op s

∗/
void SetMotorPower (uint8_t motor , int16_t speed) ;

/∗∗
∗ Stop a l l motors immediate ly

22

∗/
void StopMotors (void) ;

/∗∗
∗ Adjus ts the PWM frequency , can be changed in r e a l time

during opera t ion

∗/
void setMotorPWMfrequency (uint16_t f requency) ;

Listing 6.1: Interface of the motor driver

6.1.2 Motor Driver Implementation

The motor driver uses a 16-bit Timer/Counter for PWM generation. The

timer/counter peripheral is con�gured in the initialization phase, when the func-

tion Motors_init() is called. This function con�gures the TIMER1 peripheral

for operation in Phase and Frequency Correct PWM mode, with three Out-

put Compare Channels. It also con�gures output pins for setting the motor

direction.

Function SetMotorPower(uint8_t motor, int16_t speed) then sets the

direction of rotation (depending on the sign of the speed variable) and the

PWM duty for appropriate Output Compare channel.

It is possible to adjust the PWM frequency. This is done by changing the

ICR1 register of the TIMER1 peripheral. The PWM frequency should be set

according to the hardware capabilities and motor characteristics.

6.2 Line Following

Hanuman robot is capable of line following. It follows a black line marked on

bright surface. According to the Eurobot 2013 rules, the line guides the robot

to a gifts that need to be unwrapped.

The line-following algorithm is a simple control loop feedback mechanism

[13]. Optical sensors measure the light re�ectivity of the surface and acquired

data is processed by the line detection algorithm. The algorithm is designed in

such a manner that line width does not matter. The line detection algorithm

outputs signed integer value that states the actual de�ection of a guideline (error

term e(t) in time t). Values close to zero mean that the line is located accurately

23

in the middle of the sensor module, positive values state how much does the line

de�ects to the right and negative values state the de�ection to the left. This

output is then used for controlling the line tracking.

6.2.1 PID controller

This section describes the proportional-integral-derivate (PID) controller [14],

which is a universal closed loop feedback algorithm. We will describe how the

PID controller is utilized to control line tracking.

The PID controller adjusts the wheels' speed according to the actual line

de�ection and previous states. De�ning u(t) as the controller output (di�erence

between speed of left and right wheel), the PID algorithm is as follows:

u(t) = Kpe(t) +Ki

ˆ t

0

e(τ)dτ +Kd
d

dt
e(t)

where Kp (Proportional gain), Ki (Integral gain) and Kd (Derivative gain)

are parameters of the PID regulator. See PID controller overview in Figure 6.1.

Plant /
Process

Figure 6.1: PID controller overview

The Proportional term Kp a�ect wheel speed in a way that the robot turns

towards the guiding line. However, at higher speeds, the Proportional regulation

is not su�cient, because the system starts to overshoot. Therefore, we set the

Derivative term Kd which a�ects u(t) when the rate of change of error e(t) is

considerable. That suppresses overshooting. The Integral part of regulator is

not used for line following, so the Ki is set to 0.

In the microcontroller, a discrete version of PID regulator is implemented

[15]. We approximate the derivative and integral terms:

24

d

dt
e(t) ≈

e(t)− e(t− h)

h

and

ˆ t

0

e(τ)dτ ≈ h

t∑
i=0

e(i)

Where h = 1 is the time period between discrete samples of error term e(t).

The discrete version of PID controller is as follows:

u(t) = Kpe(t) +Ki

t∑
i=0

e(i) +Kd (e(t)− e(t− 1))

To conclude, the PID controller drives the robot so that the line is always

centered to the middle of the sensor module, so that the robot performs smooth

line following.

6.3 Android Control Application

The HanumanController is a simple Java application for Android phones. It

allows to control movement of the robot using a virtual joystick on the touch-

screen, to control the rotation of the robot or just to set the individual wheel

speeds. Finally, user can turn the autonomous line following mode from the

application.

A simple binary protocol is used for the communication between the Android

phone and the Hanuman robot.

25

Figure 6.2: HanumanController - Android application

26

Conclusion

Embedded system for a mobile robot was developed and tested. It supports

functionality required by the Eurobot 2013 competition, such as line following

and tennis ball manipulation using a speci�c hardware manipulator.

The whole structure of the Hanuman Embedded System is well designed and

logically divided into drivers and modules, that can be developed and tested

individually. This is essential when more people work on the same software

project. Moreover, a collaboration system was established with an online source

code repository (Mercurial, hosted on GoogleCode).

The source code is well commented, mostly using Doxygen annotations, so

the documentation can be automatically generated out of the project source

�les.

A development diary is available online [16].

27

Bibliography

[1] Ond°ej Stan¥k. Centralized Multi-Robot System, bachelor thesis,

The Department of Software Engineering , Charles University in

Prague, 2012

[2] Camera Dean. LUFA (2012) [online].
http://www.fourwalledcubicle.com/LUFA.php

[3] https://code.google.com/p/hanuman/

[4] https://en.wikipedia.org/wiki/Revision_control

[5] http://mercurial.selenic.com/

[6] http://mercurial.selenic.com/wiki/TortoiseHg

[7] http://gcc.gnu.org/wiki/avr-gcc

[8] http://www.atmel.com/microsite/avr_studio_5/

[9] winavr.sourceforge.net

[10] http://www.nongnu.org/avrdude/

[11] avr-eclipse.sourceforge.net

[12] http://dx.com/p/jy-mcu-arduino-bluetooth-wireless-serial-port-

module-104299

[13] Nise S. N. Control Systems Engineering. Willey. Fourth Edition.

2004 ISBN 978-0-471-44577-7

[14] PID controller [online]. Wikipedia.
http://en.wikipedia.org/wiki/PID_controller

[15] Tham M. Discretised PID Controllers [online].
http://lorien.ncl.ac.uk/ming/digicont/digimath/dpid1.htm

[16] https://code.google.com/p/hanuman/wiki/DevelopmentDiary

28

http://www.fourwalledcubicle.com/LUFA.php
http://en.wikipedia.org/wiki/PID_controller
http://lorien.ncl.ac.uk/ming/digicont/digimath/dpid1.htm

	I Analysis
	Introduction
	Mobile Robots
	Sensors
	Actuators
	The Eurobot Contest

	II Design
	Development Tools
	Source Control Management Tool
	Teamwork
	Toolchain and IDE for Embedded Software Development

	Programming Guidelines
	Embedded Control System of a Robot
	Microcontroller
	Modules and Peripheral Drivers
	Example of Non-blocking Peripheral Driver
	Debugging and Error Messages

	Communication Interface
	Wireless Connection to the Robot
	Bluetooth
	Bluetooth RFCOMM modules

	The Terminal Interface of the Robot

	III Implementation
	Hanuman Robot
	Mechanics
	Electronics
	Firmware

	Embedded System Implementation
	Motor Driver
	The Motor Driver Interface
	Motor Driver Implementation

	Line Following
	PID controller

	Android Control Application

