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Project 1: Given a plate capacitor we want the overall electric �eld including
the edges with real behaviour: Compute E �eld inside plates nearby up
to further away including a plot of bending at the edges. What can you
tell about the potential?

Abstract

This paper describes models how to calculate electrical �eld for a plate

capacitor. At �rst, author introduces numerical method for calculation

the electric �eld of a plate capacitor. A discrete model of electric �eld

calculation for any arbitrary charge distribution is described. Based on

the observation of the discrete model, a generalization is made, which

brings analytical expression for any arbitrary charge distribution. Finally,

the derived analytic equations are adapted to describe �eld of a plate

capacitor. The analytic expressions are then taken as a core of a Matlab

program that visualizes the electrical �eld. For better understanding, the

2 dimensional case is considered �rst. Finally, the Matlab program is

extended to support 3 dimensional visualization of the �eld.

Part I

Preliminaries

The whole work in this project is based on just only one simple equation for
electrical �eld:

E =
q

4πε0r2

The equation states that the magnitude of electrical �eld ~E at distance r
from a point charge q is proportional to the magnitude of charge q divided by
distance r to the power of 2.

Moreover, please note that the vector ~E(~v) lies on the line which con-
nects point of interest ~v and location of the point charge q. Therefore, the
electrical �eld ~E generated by a single point charge q located at coordinates
~p = (px, py, pz) can be described as follows:
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~E(~v) =
q

4πε0 ‖~v − ~p‖2
· (~v − ~p)
‖~v − ~p‖

(1)

where the term ~v−~p
‖~v−~p‖ is the normalized direction vector of the �eld and ‖·‖

is the euclidean norm on a vector space.
The second and last fact we need from the theory is the principle of super-

position. Simply put, when there are more point charges present, the electrical
�elds generated by each of them are superposed (added) together to form one
resulting electrical �eld.

So, this is all the theory we need for our models of electrical �elds. Now we
will just use basic rules from calculus and vector algebra to build various models
for electrical �eld.

Part II

Models of electrical �eld

1 Discrete model of electrical �eld

My �rst attempt to solve the problem was to approximate electrical �eld of
a capacitor by evaluating the electrical �elds of many small point charges dis-
tributed evenly on the capacitor plates. Here I will describe a generalization how
to calculate electrical �eld for any arbitrary distribution of small point charges.
Assume we have a set of charges si = (qi, ~pi), where qi is the charge in Columbs
of a particular point and ~pi = (pi,xpi,y, pi,z) is the coordinate vector describing
the point charge position. Then, every point charge si creates an electrical �eld
component ~Ei. Thanks to the principle of superposition, the resulting electrical
vector �eld of all point charges is as follows:

~E =
∑
i

~Ei

Denoting ~E(~v) as the intensity of electrical �eld at point ~v = (vx, vy, vz) and
using equation (I) we get the formula for the total electrical �eld generated by
all point charges:

~E(~v) =
∑
i

~Ei(~v) =
∑
i

qi

4πε0 ‖~v − ~pi‖2
· (~v − ~pi)

‖~v − ~pi‖
=

1

4πε0

∑
i

qi (~v − ~pi)

‖~v − ~pi‖3

Implementation of this model in Matlab is straightforward, and we can place
the point charges si in any way, to simulate various types and con�gurations
of capacitors etc.. However, this method yields suboptimal results in term of
precision of the calculated electric �eld. It is just an approximation of reality.
But of course, the error can be made arbitrary small by increasing the number
of point charges, as long as their distribution corresponds to reality.
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2 Analytical model of electrical �eld

In this section, we will describe an analytical model that does not su�er from any
approximation error. This model takes the ideas presented in previous section
and assumes that there is in�nite number of point charges, with charge that
tends to zero for every single one of them. Then, we do the transition from
sums to integrals. First, we will derive a general formula of ~E for arbitrary
charge distribution.

Instead of a point charge qi, we have now a continuous charge distribution
ρ : R3 → R. A charge in volume V ⊆ R3 is then calculated by integration of
the ρ charge distribution: QV =

˝
V
ρ(~v)dV .

Now please note that for the sake of clarity and simplicity, we will abuse the
integral notation a bit. We will use the integration operation for integrating
vectors. Every time a vector output of the integration operation is expected,
it means the integration is done for every vector component individually. This
will greatly simplify the notation. So here is the general equation for a vector
�eld generated by arbitrary charge distribution ρ : R3 → R.

~E(~v) =

˚
ρ(~p)

4πε0 ‖~v − ~p‖2
· (~v − ~p)
‖~v − ~p‖

dP =
1

4πε0

˚
ρ(~p) (~v − ~p)
‖~v − ~p‖3

dP (2)

Note this equation only holds for 3-dimensional charge distribution. If the
charge is distributed on a 2-d plane in 3-dimensional space, then the integral
has to be adapted accordingly, to integrate over a surface, not over a volume.
The derivation is straightforward, I will not go in details here.

2.1 Application - calculating �eld of a capacitor plates (2-
dimensional case)

At �rst, we will applicate the general formula (2) to a charged line in two
dimensional plane. Assume that the line is a set L = {(x, c)|x ∈ [−d, d]}, for
c ∈ R constant, and the appropriate charge density1 ρ on that line is constant.

Because the charge is located only on the line L, we will integrate only on
this line.

Ex(vx, vy) =
ρ

2πε0

ˆ d

−d

(vx − x)
(vx − x)2 + (vy − c)2

dx =
ρ

2πε0

[
−1

2
log
(
(vx − x)2 + (c− vy)2

)]d
−d

Ey(vx, vy) =
ρ

2πε0

ˆ d

−d

(vy − c)
(vx − x)2 + (vy − c)2

dx =
ρ

2πε0

[
arctan

(
vx − x
c− vy

)]d
−d

1I use term distribution if the function varies across space, if it is constant I use term

charge density
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Figure 1: Single capacitor plate - Matlab plot of electrical �eld

Please note that electric �eld is a quantity that has physical meaning only
in 3-dimensional space. If we want to consider a 2-dimensional case, slightly
di�erent formula for calculation of a point charge electric �eld has to be used:

E =
q

2πε0r

This formula satis�es the same properties as the 3-dimensional formula
would, if the z-dimension was invariant. To give better idea, imagine that the
capacitor plate is extended to in�nity in the z-dimension. Proof is straightfor-
ward (principle of superposition).

These formulas are then implemented in Matlab script to calculate the vector
�eld precisely at any arbitrary point in space. A vector �eld plot is drawn.
Please see the supplementary �gures.

2.2 Application - calculating �eld of a capacitor plates (3-
dimensional case)

The general formula for electric �eld caused by charge distributed on surface S
is:

~E(vx, vy, vz) =
1

4πε0

¨
S

ρ(sx, sy, sz) · (~v − ~s)(√
(vx − sx)2 + (vy − sy)2 + (vz − sz)2

)3 dS
We integrate over an arbitrary surface S ⊂ R3, which represents the charged

surface. In the most general case, the charge density ρ does not have to be
constant and the surface can be of any shape. Presented equation holds for any
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Figure 2: electrical �eld of a plate capacitor, 2D
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arbitrary case. However, for now, we will consider a square shaped capacitor
plates with constant charge density. The plate of such capacitor is a set S =
{(x, y, c)|x ∈ [−d, d] , y ∈ [−d, d]} for c ∈ R constant, and the appropriate charge
density ρ for that surface is constant. Then, the equation for vector �eld is as
follows:

Ex(vx, vy, vz) =
ρ

4πε0

ˆ d

−d

ˆ d

−d

(vx − x)(√
(vx − x)2 + (vy − y)2 + (vz − c)2

)3 dxdy

Ey(vx, vy, vz) =
ρ

4πε0

ˆ d

−d

ˆ d

−d

(vy − y)(√
(vx − x)2 + (vy − y)2 + (vz − c)2

)3 dxdy

Ez(vx, vy, vz) =
ρ

4πε0

ˆ d

−d

ˆ d

−d

(vz − c)(√
(vx − x)2 + (vy − y)2 + (vz − c)2

)3 dxdy
These integrals can be solved analytically. I used Matlab for symbolic in-

tegration of these formulas. The analytical form of the solution is quite com-
plicated, so I am not presenting the solution here. However, it can be easily
extracted from the Matlab program.
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Figure 3: electrical �eld of a plate capacitor, 3D

Part III

Conclusion

In this paper, we presented a method how to calculate electrical �eld of any
arbitrary charge distribution in space. First, we introduced discrete model of
electrical �eld. Consequently, we have shown method for analytical calculation
of electrical �eld. The analytical model were then implemented in Matlab;
electrical �eld of square plate capacitor was calculated and plots were made in
2D and 3D.

Analytical method has considerable advantages over numerical solution of
the problem. Most importantly, analytical expression for electric �eld yields
absolutely accurate results. Furthermore, the calculation is fast even for huge
models. Any numerical solution to this problem is suboptimal and its calculation
takes much more processing power and time. However, for more complicated
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surfaces or charge distributions, the analytical formulas may not exist. In such
case, numerical solution is the only way to go. I wrote this paper to show
that for certain problems, the symbolic math toolbox in Matlab is much more
suitable than the ordinary �numerical� way of calculation, which is intrinsic for
Matlab.

Appendinx - Matlab scripts

Capacitor in two-dimensional space

Listing 1: Matlab script - �eld of a plate capacitor in 2D

%% Computation o f e l e c t r i c a l f i e l d o f a p l a t e capac i tor ,
2D

% Ondøej Stanìk , 2012−12−14
% www. ostan . cz
%
% Maxwell Eqation c l a s s
% SRH Hochschule He ide l b e rg

close a l l % c l o s e a l l f i g u r e windows t ha t are open
clear a l l % c l e a r a l l the v a r i a b l e s c u r r en t l y s t o r ed in

memory
clc % c l e a r the commands in the command window

syms x y vx vy

e0 = 8.854187817620E−12; % pe rm i t i v i t y o f f r e e space

plateLength = 1 . 2 ; % leng t h o f the p l a t e in meters
chargeDens i ty = 1 ; % l i n e charge den s i t y o f capac i t o r

p l a t e s ( constant , 2−dimensiona l case ) , in [Q/m]
g r idReso lu t i on = 20 ; % re s o l u t i o n o f g r i d
p la t eD i s tance = 1 ; % di s t ance o f capac i t o r p l a t e s in

meters

% norma l i za t ion cons tant t ha t g i v e s our c a l c u l a t i o n s
p h y s i c a l meaning in

% terms o f SI un i t s . .
phys ica lConstant = 1/(2∗pi∗ e0 ) ; % circumference o f a

c i r c l e

% the ana l y t i c e xp re s s i on f o r vec t o r x−coord ina te e lement
at coord ina t e s
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% ( vx , vy ) − i n d e f i n i t e i n t e g r a l
Ex = in t ( ( vx−x ) /( ( vx−x )^2+(vy−p la t eD i s tance /2) ^2) , x ) ∗

phys ica lConstant ∗ chargeDens i ty ;

% the ana l y t i c e xp re s s i on f o r y−vec to r y−coord ina te
e lement at coord ina t e s ( vx , vy )

Ey = in t ( ( vy−p la t eD i s tance /2) / ( ( vx−x )^2+(vy−p la t eD i s tance
/2) ^2) ) ∗ phys ica lConstant ∗ chargeDens i ty ;

ExDef in i te = subs (Ex , x , p lateLength /2) − subs (Ex , x,−
plateLength /2)

EyDef in i te = subs (Ey , x , p lateLength /2) − subs (Ey , x,−
plateLength /2)

% su b s t i t u t i o n o f a s p e c i f i c numbers to symbo l i c
e xp r e s s i on s Ex , Ey .

ExS = @( vxs , vys ) subs ( ExDef in ite , [ vx , vy ] , [ vxs , vys ] ) ;
EyS = @( vxs , vys ) subs ( EyDef in ite , [ vx , vy ] , [ vxs , vys ] ) ;

% genera te vec t o r coord ina t e s
X = linspace(−plateLength , plateLength , g r i dReso lu t i on ) ;
Y = linspace(−plateLength , plateLength , g r i dReso lu t i on ) ;

% i n i t i a l i z e 2−dimensiona l array to s t o r e vec t o r f i e l d
VX = zeros ( g r idReso lut ion , g r i dReso lu t i on ) ;
VY = zeros ( g r idReso lut ion , g r i dReso lu t i on ) ;

% ca l c u l a t e the vec t o r f i e l d f o r one p l a t e
for x = 1 : 1 : g r i dReso lu t i on

for y = 1 : 1 : g r i dReso lu t i on
VX(y , x ) = ExS(X(x ) ,Y(y ) ) ;
VY(y , x ) = EyS(X(x ) ,Y(y ) ) ;

pe rcentF in i shed = 100∗ ( ( x−1)/ g r idReso lu t i on + (y
−1)/ g r idReso lu t i on ^2)

end

end

% compute the f i e l d f o r nega t i v e capac i t o r p l a t e
% simple v e c t o r f i e l d t rans format ion : j u s t f l i p the

v e c t o r f i e l d around y−ax i s and r ev e r s e s i gn
VX2 = − fl ipud (VX) ;
VY2 = fl ipud (VY) ;

% compute the f i e l d suppe rpo s i t i on o f the nega t i v e and
p o s i t i v e capac i t o r p l a t e
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VXS = VX + VX2;
VYS = VY + VY2;

% p l o t v e c t o r f i e l d in 2D:
f igure ;
quiver (Y,X,VXS,VYS, ' k ' ) ;

% p l o t the capac i t o r p l a t e s
hold on ;
plot ([− plateLength /2 , p lateLength / 2 ] , [ p l a t eD i s tance /2 ,

p l a t eD i s tance /2 ] , ' r− ' ) ;
plot ([− plateLength /2 , p lateLength /2] , [− p la t eD i s tance /2 , −

p la t eD i s tance /2 ] , 'b− ' ) ;
legend ( ' v e c t o r f i e l d ' , ' p o s i t i v e  p l a t e ' , ' negat ive  p l a t e ' ) ;

Capacitor in three-dimensional space

Listing 2: Matlab script - �eld of a plate capacitor in 3D

%% Computation o f e l e c t r i c a l f i e l d o f a p l a t e capac i tor ,
3D

% Ondøej Stanìk , 2012−12−29
% www. ostan . cz
%
% Maxwell Eqation c l a s s
% SRH Hochschule He ide l b e rg

close a l l % c l o s e a l l f i g u r e windows t ha t are open
clear a l l % c l e a r a l l the v a r i a b l e s c u r r en t l y s t o r ed in

memory
clc % c l e a r the commands in the command window

syms x y z vx vy vz

e0 = 8.854187817620E−12; % pe rm i t i v i t y o f f r e e space

plateLength = 1 . 2 ; % leng t h o f the p l a t e in meters
chargeDens i ty = 1 ; % sur face charge d en s i t y o f capac i t o r

p l a t e s ( cons tant ) , in [Q/m^2]
g r idReso lu t i on = 8 ; % re s o l u t i o n o f g r i d
p la t eD i s tance = 0 . 7 ; % di s t ance o f capac i t o r p l a t e s in

meters

% norma l i za t ion cons tant t ha t g i v e s our c a l c u l a t i o n s
p h y s i c a l meaning in

% terms o f SI un i t s . .
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phys ica lConstant = 1/(4∗pi∗ e0 ) ;

% the ana l y t i c e xp re s s i on f o r vec t o r x−coord ina te e lement
at coord ina t e s ( vx , vy , vz )

Ex = in t ( ( vx−x ) / ( ( ( vx−x )^2+(vy−y )^2+(vz−p la t eD i s tance /2)
^2) ^(3/2) ) , x ) ∗ phys ica lConstant ∗ chargeDens i ty ;

Ex2 = subs (Ex , x , p lateLength /2) − subs (Ex , x,−plateLength
/2) ;

Ex3 = in t (Ex2 , y ) ;
ExDef in i te = subs (Ex3 , y , p lateLength /2) − subs (Ex3 , y,−

plateLength /2)

% the ana l y t i c e xp re s s i on f o r vec t o r y−coord ina te e lement
at coord ina t e s ( vx , vy , xz )

Ey = in t ( ( vy−y ) / ( ( ( vx−x )^2+(vy−y )^2+(vz−p la t eD i s tance /2)
^2) ^(3/2) ) , x ) ∗ phys ica lConstant ∗ chargeDens i ty ;

Ey2 = subs (Ey , x , p lateLength /2) − subs (Ey , x,−plateLength
/2) ;

Ey3 = in t (Ey2 , y ) ;
EyDef in i te = subs (Ey3 , y , p lateLength /2) − subs (Ey3 , y,−

plateLength /2)

% the ana l y t i c e xp re s s i on f o r vec t o r z−coord ina te e lement
at coord ina t e s ( vx , vy , xz )

Ez = in t ( ( vz−p la t eD i s tance /2) / ( ( vx−x )^2+(vy−y )^2+(vz−
p la t eD i s tance /2) ^2) ^(3/2) , x ) ∗ phys ica lConstant ∗
chargeDens i ty ;

Ez2 = subs (Ez , x , p lateLength /2) − subs (Ez , x,−plateLength
/2) ;

Ez3 = in t (Ez2 , y ) ;
EzDe f in i t e = subs (Ez3 , y , p lateLength /2) − subs (Ez3 , y,−

plateLength /2)

% su b s t i t u t i o n o f a s p e c i f i c numbers to symbo l i c
e xp r e s s i on s Ex , Ey .

ExS = @( vxs , vys , vzs ) subs ( ExDef in ite , [ vx , vy , vz ] , [ vxs , vys ,
vzs ] ) ;

EyS = @( vxs , vys , vzs ) subs ( EyDef in ite , [ vx , vy , vz ] , [ vxs , vys ,
vzs ] ) ;

EzS = @( vxs , vys , vzs ) subs ( EzDef in i te , [ vx , vy , vz ] , [ vxs , vys ,
vzs ] ) ;

% genera te vec t o r coord ina t e s
X = linspace(−plateLength , plateLength , g r i dReso lu t i on ) ;
Y = linspace(−plateLength , plateLength , g r i dReso lu t i on ) ;
Z = linspace(−plateLength , plateLength , g r i dReso lu t i on ) ;
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% i n i t i a l i z e 3−dimensiona l array to s t o r e vec t o r f i e l d
VX = zeros ( g r idReso lut ion , g r idReso lut ion , g r i dRe so lu t i on ) ;
VY = zeros ( g r idReso lut ion , g r idReso lut ion , g r i dRe so lu t i on ) ;
VZ = zeros ( g r idReso lut ion , g r idReso lut ion , g r i dRe so lu t i on ) ;

% ca l c u l a t e the vec t o r f i e l d f o r one p l a t e
for x = 1 : 1 : g r i dReso lu t i on

for y = 1 : 1 : g r i dReso lu t i on
for z= 1 : 1 : g r i dReso lu t i on
VX( z , y , x ) = ExS(X(x ) ,Y(y ) ,Z( z ) ) ;
VY( z , y , x ) = EyS(X(x ) ,Y(y ) ,Z( z ) ) ;
VZ( z , y , x ) = EzS(X(x ) ,Y(y ) ,Z( z ) ) ;

pe rcentF in i shed = 100∗ ( ( x−1)/ g r idReso lu t i on + (
y−1)/ g r idReso lu t i on ^2 + ( z−1)/ g r idReso lu t i on
^3)

end

end

end

% ca l c u l a t e the f i e l d o f nega t i v e p l a t e , take advantage
o f s yme t r i c i t y

VX2 = f l i pd im (VX, 1 ) ∗ −1;
VY2 = f l i pd im (VY, 1 ) ∗ −1;
VZ2 = f l i pd im (VZ, 1 ) ∗ 1 ;

% superpose the f i e l d o f nega t i v e and p o s i t i v e p l a t e
VXS = VX + VX2;
VYS = VY + VY2;
VZS = VZ + VZ2 ;

% p l o t v e c t o r f i e l d in 3D:
[XX, YY, ZZ ] = meshgrid (X,Y,Z) ;

f igure ;
qu iver3 (XX,YY,ZZ ,VYS,VZS,VXS, ' k ' ) ;

% p l o t the capac i t o r p l a t e s
hold on
X = [−plateLength /2 plateLength /2 ; −plateLength /2

plateLength / 2 ; ] ;
Y = [ plateLength /2 plateLength /2 ; −plateLength /2 −

plateLength / 2 ; ] ;
Z = ones ( s ize (X) ) ∗ p la t eD i s tance /2 ;
mesh(Y, Z ,X, ' EdgeColor ' , ' red ' , ' FaceAlpha ' , 0 . 5 , ' FaceColor ' ,
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' red ' ) ;
mesh(Y,Z∗−1,X, ' EdgeColor ' , ' b lue ' , ' FaceAlpha ' , 0 . 5 , '

FaceColor ' , ' b lue ' ) ;
legend ( ' v e c t o r f i e l d ' , ' p o s i t i v e  p l a t e ' , ' negat ive  p l a t e ' ) ;
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